Últimas noticias

El 26/11/2021 se han entregado los premios a las mejores tesis doctorales y trabajos fin de máster otorgados por el Colegio Oficial de Ingenieros de Telecomunicación (COIT) de 2020 y 2021. En esta edición han sid ...

Participation in SALLD-1 Workshop on Sentiment Analysis & Linguistic Linked Data hold  held in conjunction with LDK 2021 – 3rd Conference on Language, Data and Knowledge in Zaragoza. The invited talk is t ...

El pasado martes 15 de junio se llevó a cabo la actividad del proyecto Gamusino con alumnos de tercero de la ESO del colegio Comunidad Infantil Villaverde. El proyecto Gamusino (GAMUSINO - Técnicas de Gamificaci ...

Canal GSI

The journal paper An Approach for Radicalization Detection based on Emotion Signals and Semantic Similarity by Oscar Araque and Carlos Angel Iglesias has been published at IEEE Access (4.098 impact factor, Q1 JCR-2018).

The paper is available at the following URL: https://ieeexplore.ieee.org/document/8962050

DOI: https://doi.org/10.1109/ACCESS.2020.2967219



The Internet has become an important tool for modern terrorist groups as a means of spreading their propaganda messages and recruitment purposes. Previous studies have shown that the analysis of social signs can help in the analysis, detection, and prediction of radical users. In this work, we focus on the analysis of affect signs in social media and social networks, which has not been yet previously addressed. The article contributions are: (i) a novel dataset to be used in radicalization detection works, (ii) a method for utilizing an emotion lexicon for radicalization detection, and (iii) an application to the radical detection domain of an embedding-based semantic similarity model. Results show that emotion can be a reliable indicator of radicalization, as well as that the proposed feature extraction methods can yield high-performance scores.