Últimas noticias

This week we present the article titled A Modular LLM-Enhanced Agent-Based System for the Generation and Evaluation of Journalistic Interview Questions, Roberto Jiménez de la Torre & Carlos Á. Iglesias in the ...

Hoy se ha celebrado el acto de inauguración del aula Gregorio Fernández en el 40ª aniversario del GSI.   El acto ha estado presidido por D. Manuel Sierra, Director  de la ETSIT, D. Guillermo Cisneros, Rector ...

GSI is participating in BDVA (Big Data Value Association) forum in Copenhague to present research results and establish collaboration links.

Canal GSI

The journal paper An Approach for Radicalization Detection based on Emotion Signals and Semantic Similarity by Oscar Araque and Carlos Angel Iglesias has been published at IEEE Access (4.098 impact factor, Q1 JCR-2018).

The paper is available at the following URL: https://ieeexplore.ieee.org/document/8962050

DOI: https://doi.org/10.1109/ACCESS.2020.2967219

 

Abstract:

The Internet has become an important tool for modern terrorist groups as a means of spreading their propaganda messages and recruitment purposes. Previous studies have shown that the analysis of social signs can help in the analysis, detection, and prediction of radical users. In this work, we focus on the analysis of affect signs in social media and social networks, which has not been yet previously addressed. The article contributions are: (i) a novel dataset to be used in radicalization detection works, (ii) a method for utilizing an emotion lexicon for radicalization detection, and (iii) an application to the radical detection domain of an embedding-based semantic similarity model. Results show that emotion can be a reliable indicator of radicalization, as well as that the proposed feature extraction methods can yield high-performance scores.