Noticias

Es un placer felicitar a nuestro compañero Juan Ramón Velasco por el merecido Premio de Investigación e Innovación de CLM 2022. ¡Felicidades!

 

Juan Ramón Velasco, catedrático de la UAH y guadalajareño de adopción, recogerá el Premio Investigación e Innovación de CLM 2022

Juan Ramón Velasco es ingeniero de Telecomunicaciones y catedrático de la UAH. Imagen: Universidad de Alcalá
 

El profesor de la UAH recibirá el galardón en la categoría de Ingeniería y Arquitectura el próximo lunes, 6 de marzo

 

El Gobierno regional entregará los Premios de Investigación e Innovación de Castilla-La Mancha 2022 el 6 de marzo, lunes, en un acto que tendrá lugar en la Facultad de Farmacia de Albacete. Unos galardones con los que se reconoce y premia el esfuerzo, la calidad y la excelencia en el ámbito de la investigación y la actividad científica.

 

De ello ha informado la consejera de Igualdad y portavoz, Blanca Fernández, que ha detallado el resultado de la deliberación del jurado de estos premios que se traduce en la entrega de 16 galardones, repartidos en siete categorías, “a personas con trayectorias muy importantes, con mucho potencial investigador y reconocidas a nivel nacional e internacional”, ha dicho la consejera, que ha mostrado su orgullo por el “mucho talento que tenemos en Castilla-La Mancha”.

 

Comienza el proyecto MIRATAR cuyo objetivo es mejorar la calidad de vida de las personas ancianas mediante la detección temprana de la fragilidad. GSI participa con el desarrollo de modelos de inteligencia artificial para detectar factores de fragilidad y realizar recomendaciones para retrasar su aparición.

This week GSI participates in the  H2020 Participation general assembly. The PARTICIPATION project starts with the assumption that a broken top-down approach to research and preventive design is needed. It aims to capture and explore contemporary experiences of extremism and radicalization and proposes concrete actions, policies, and digital tools that will empower policy actors and practitioners to respond to a changing reality. The project’s main topics are also violence, conflict and conflict resolution, the transformation of societies, democratization, and social movements.

The article "Prediction of stress levels in the workplace using surrounding stress", by Sergio Muñoz, Carlos A. Iglesias, Oscar Mayora and Venet Osmani has been published in the Information Processing & Management journal (7.466 impact factor, JCR Q1 2021). This work is a product of the COGNOS Project.

The full paper can be found at this URL.

 

Abstract:

Occupational stress has a significant adverse effect on workers’ well-being, productivity, and performance and is becoming a major concern for both individual companies and the overall economy. To reduce negative consequences, early detection of stress is a key factor. In response several stress prediction methods have been proposed, whose primary aim is to analyse physiological and behavioural data. However, evidence suggests that solutions based on physiological and behavioural data alone might be challenging when implemented in real-world settings. These solutions are sensitive to data problems arising from losses in signal quality or alterations in body responses, which are common in everyday activities. The contagious nature of stress and its sensitivity to the surroundings can be used to improve these methods. In this study, we sought to investigate automatic stress prediction using both surrounding stress data, which we define as close colleagues’ stress levels and the stress level history of the individuals. We introduce a real-life, unconstrained study conducted with 30 workers monitored over 8 weeks. Furthermore, we propose a method to investigate the effect of stress levels of close colleagues on the prediction of an individual’s stress levels. Our method is also validated on an external, independent dataset. Our results show that surrounding stress can be used to improve stress prediction in the workplace, where we achieve 80% of F-score in predicting individuals’ stress levels from the surrounding stress data in a multiclass stress classification.

 

 

We are happy to announce the release of Participation Chrome Extension.

If you want to try it:

1. Go to https://chrome.google.com/webstore

2. Search 'gsi'

 

You should find these extensions:

 

3. Install  Participation Chrome plugin

a) Click on the plugin

b) Click on 'Add to Chrome'

 

The extension is installed and ready to be used! 

 

4) Use it.

4.1. Select the text you want to analyze

4.2. Click on the button to launch the extension